Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Data Brief ; 49: 109312, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20233818

ABSTRACT

The SARS-CoV-2 virus has evolved throughout the pandemic and is likely to continue evolving into new variants. Some of these variants may affect functional properties, including infectivity, interactions with host immunity, and disease severity. And compromised vaccine efficacy is an emerging concern with every new viral variant. Next-generation sequencing (NGS) has emerged as the tool of choice for discovering new variants and understanding the transmission dynamics of SARS-CoV-2. Deciphering the SARS-CoV-2 genome has enabled epidemiological survivance and forecast of altered etiologically. Clinical presentations of the infection are influenced by comorbidities such as age, immune status, diabetes, and the infecting variant. Thus, clinical management and vaccine efficacy may differ for new variants. For example, some monoclonal antibody treatments are variant-specific, and some vaccines are less efficacious against the omicron and delta variants of SARS-CoV-2. Consequently, determining the local outbreaks and monitoring SARS-CoV-2 Variants of Concern (VOC) is one of the primary strategies for the pandemic's containment. Although next-generation sequencing (NGS) is a gold standard for genomic surveillance and variant discovery, the assays are not approved for variant diagnosis for clinical decision-making. Advanta Genetics, Texas, USA, optimized Illumina COVID-seq protocol to reduce cost without compromising accuracy and validated the Illumina COVID-Seq assay as a Laboratory Developed Test (LDT) according to the guidelines prescribed by the College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA). The whole genome of the virus was sequenced in (n = 161) samples from the East Texas region using the Illumina MiniSeq® instrument and analyzed by using Illumina baseSpace (https://basespace.illumina.com) bioinformatics pipeline. Briefly, the library was prepared by using Illumina COVIDSeq research use only (RUO) kit, and the individual libraries were normalized using the DNA concentration measured by Qubit Flex Fluorometer, and the pooled libraries were sequenced on Illumina MiniSeq® Instrument. Illumina baseSpace application was used for sequencing QC, FASTQ generation, genome assembly, and identification of SARS-CoV-2 variants. This whole genome shotgun project (n = 161) has been deposited at GISAID.

2.
Pract Lab Med ; 34: e00311, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2221245

ABSTRACT

A decentralized surveillance system to identify local outbreaks and monitor SARS-CoV-2 Variants of Concern is one of the primary strategies for the pandemic's containment. Although next-generation sequencing (NGS) is a gold standard for genomic surveillance and variant discovery, the technology is still cost-prohibitive for decentralized sequencing, particularly in small independent labs with limited resources. We have optimized the Illumina COVIDSeq™ protocol for the Illumina MiniSeq instrument to reduce cost without compromising accuracy. We slashed the library preparation cost by half by using 50% of recommended reagents at each step and normalizing the libraries before pooling to achieve uniform coverage. Reagent-only cost (∼$43.27/sample) for SARS-CoV-2 variant analysis with this normalized input protocol on MiniSeq instruments is comparable to what is achieved on high throughput instruments such as NextSeq and NovaSeq. Using this modified protocol, we tested 153 clinical samples, and 90% of genomic coverage was achieved for 142/153 samples analyzed in this study. The lineage was correctly assigned to all samples (152/153) except for one. This modified protocol can help laboratories with constrained resources to contribute in decentralized COVID-19 surveillance in the post-vaccination era.

3.
Arch Clin Biomed Res ; 6(6): 954-970, 2022.
Article in English | MEDLINE | ID: covidwho-2205482

ABSTRACT

Rapid classification and detection of SARS-CoV-2 variants have been critical in comprehending the virus's transmission dynamics. Clinical manifestation of the infection is influenced by comorbidities such as age, immune status, diabetes, and the infecting variant. Thus, clinical management may differ for new variants. For example, some monoclonal antibody treatments are variant-specific. Yet, a U.S. Food and Drug Administration (FDA)-approved test for detecting the SARS-CoV-2 variant is unavailable. A laboratory-developed test (LDT) remains a viable option for reporting the infecting variant for clinical intervention or epidemiological purposes. Accordingly, we have validated the Illumina COVIDSeq assay as an LDT according to the guidelines prescribed by the College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA). The limit of detection (LOD) of this test is Ct<30 (~15 viral copies) and >200X genomic coverage, and the test is 100% specific in the detection of existing variants. The test demonstrated 100% precision in inter-day, intra-day, and intra-laboratory reproducibility studies. It is also 100% accurate, defined by reference strain testing and split sample testing with other CLIA laboratories. Advanta Genetics LDT COVIDSeq has been reviewed by CAP inspectors and is under review by FDA for Emergency Use Authorization.

4.
Glob Health Epidemiol Genom ; 2022: 2270965, 2022.
Article in English | MEDLINE | ID: covidwho-1986434

ABSTRACT

Rapid identification and tracking of emerging SARS-CoV-2 variants are critical for understanding the transmission dynamics and developing strategies for interrupting the transmission chain. Next-Generation Sequencing (NGS) is an exceptional tool for whole-genome analysis and deciphering new mutations. The technique has been instrumental in identifying the variants of concern (VOC) and tracking this pandemic. However, NGS is complex and expensive for large-scale adoption, and epidemiological monitoring with NGS alone could be unattainable in limited-resource settings. In this study, we explored the application of RT-qPCR-based detection of the variant identified by NGS. We analyzed a total of 78 deidentified samples that screened positive for SARS-CoV-2 from two timeframes, August 2020 and July 2021. All 78 samples were classified into WHO lineages by whole-genome sequencing and then compared with two commercially available RT-qPCR assays for spike protein mutation(s). The data showed good concordance between RT-qPCR and NGS analysis for specific SARS-CoV-2 lineages and characteristic mutations. RT-qPCR assays are quick and cost-effective and thus can be implemented in synergy with NGS for screening NGS-identified mutations of SARS-CoV-2 for clinical and epidemiological interest. Strategic use of NGS and RT-qPCR can offer several COVID-19 epidemiological advantages.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing/methods , Humans , Pandemics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL